1.2 Cotton water consumption rates and irrigation regime

1.2.1 General comments

On the irrigation regime and water consumption rates study the research results from 7 projects were presented, including 4 projects in Uzbekistan and 3 projects in Tadjikistan. At the same time, 3 projects from Uzbekistan included research of cotton field water consumption (total evaporation formation) during growing period with thermal balance method using electronic thermal balancing (T6-72), type AFNII. There were the following projects: 1st - NISTO (experimental station on irrigation technique by SANIIRI) located in Zangiata district, Tashkent province; 2nd - G.Goulyam state farm, SANIIRI (Syrdarya province);

3rd - state farm N24 in Karshi steppe.

At the same time, moisture changes before and after irrigation, field water balances as well as meteorological elements and crop growth and development processes were studied in these plots.

In collective farm Khalkabad water consumption rate and irrigation regime study was conducted with generally used procedure through selection of optimal pre-irrigation moisture in given calculated layer depending on crop development phase, i.e. moisture deficit in the calculated layer while changing capacity of the latter according to crop growth and development phases.

All experiments for irrigation regime study in Tadjikistan were conducted with generally used procedure by means of selection of different options of pre-irrigation moisture in given calculated layer depending on crop growth and development phases. However, these experiments have methodological differences:

first experiment - purely irrigation regime with different pre-irrigation moisture in given calculated layer against FFC by crop development phases;

second experiment - one range of moisture against FFC and changing the calculated layer within a big range;

third experiment - changing amount of mineral fertilizers depending on crop development phases.

Such differences in methodological approach complicate preparation of relevant recommendations.

In Tadjikistan two plots are located in the Vaksh valley of Hissar district, altitude is 600-800 m, and one plot - in Leninabad province on foothills.

1.2.2 Cotton irrigation regime

For the irrigation regime and water consumption rates study the research results from 7 projects were presented, where, as it was mentioned above, water consumption rate was studied with thermobalancograph. Experiments in other 4 pilot projects on cotton irrigation regime were conducted in the following way: in 2 plots (collective farm "Khalkabad", Khorezm province - 1.06.U and collective farm "Kommunizm", Kumgargansky district, Khatlan province - 1.01Tad) - according to generally used methodology; and in other 2 plots (particularly, Lenin collective farm, Khodjekent district - 1.04) - study of mineral fertilizes portion effect on yield and water consumption rates. In plot of SPA "Zemledelie", Tadjikistan, 1.06Tad, influence of changes in given calculated layer on irrigation norm, depth of irrigation and on cotton yield was studied.

Due to this fact, analysis of research results is carried out with regard to these methodological differences and uses information from relevant publications.

Plot 1.06.U (collective farm "Khalkabad") is located within hydromorphous regime of soil formation with groundwater level of 0,5-1,5 m, while plot 1.01.Tad (collective farm "Kommunizm") is located within automorphous regime, where groundwater level does not influence soil moisture. In "Khalkabad" soils consist of stratified loam and clay sediments up to 1,5m and sands below. Collective farm "Kommunizm" has light gray soils. Experiments in both plots were conducted in 5 options: first - control one; second - selection of different pre-irrigation moisture against FFC with regard for rooting system growth from 0,5 to 1,0 m.

In "Khalkabad" (1.06.U) the following rates of pre-irrigation moisture against FFC were determined: 60-70-60% with the scheme of watering 1-2-0; 70-70-60% with the scheme 1-2-0; 70-80-60% with the scheme 2-3-0; and 80-80-60% with the scheme 2-3-0 (first watering is water recharge).

In collective farm "Kommunizm" (1.01.Tad) irrigation regime for the control option followed recommendations adopted in the Republic of Tadjikistan. Other options had the following moisture against FFC: 60-60-60%; and 70-70-80%, the last option used discharge mass curve recommended by Kh.D.Domuladjanov. Irrigation stream varied within 0,4-0,6l/sec in "Dehkanabad" plot and within 0,15-0,05l/sec in "Kommunizm" plot, while lengths of furrows were 100-150m and 200-250m, respectively.

In "Khalkabad" water was supplied within certain time periods with depth of irrigation equal to 700-1100 m³/ha. Irrigation norms ranged by options from 3950 m³/ha (2nd option: pre-irrigation moisture was 70-70-60% against FFC) to 4650 m³/ha (5rd option: pre-irrigation moisture was 70-80-60% against FFC). Yield ranged from 3.2 c/ha (control option) to 44,4 c/ha (4th option: moisture was 70-80-60% against FFC).

In collective farm "Kommunizm" under automorphous conditions depth of irrigation ranged from 770 m³/ha during germination-flowering up to 1230 m³/ha during flowering-ripening. Irrigation norms varied from 7691 m³/ha (70-70-60% against FFC) to 8483 m³/ha (2nd option - 70-70-60% against FFC). In control option irrigation norm accounted for 8190 m³/ha. Following the irrigation regime the lowest yield (31,5-35,5 cwt/ha) was gathered in control option, while the highest one (44,3 c/ha) was gathered in 4th option with the scheme of watering 70-70-60.

Research results in these two plots showed, that the best cotton irrigation regime was in 4th option, where pre-irrigation moisture was 70-80-60% against FFC, while in collective farm "Kommunizm" moisture was 80-80-60% against FFC and higher and more profitable production results were obtained (table 1.2.2.1a):

Table 1.2.2.1

Assessment of irrigation water expenses within the growing period per agricultural production unit (cotton)

Pilot's index	Soil- climatic zone	Water- allo- wance	Salinity degree	Type of informa- tion	Field effici- ency	Irriga- tion depth,		on norm, ³/ha	Achieve d pro- ducti-	Yield, c/ha	Yield incre- ment,	pens	er ex- es per uction
	Zone	district		tion	eney	m ³ /ha			vity of		c/ha (%)	-	nit
									irrigati-				
									on water				
							net	gross	expen-			net,	gross
									ses			$m^{3}/$, m ³ /c
									m ³ /ha, (%)			С	
1.06. Uz.	Ц-1-А	III	strongly	OBPO	0,82	700-	4235	5200	725	42-44,1		96,5	117,8
			saline			1100			(17,3)				
				70x80x60									
				К	0,76	1080-	4900	6447		32,2-36	9,1 (21)	143,	189,0
				0.0.0.0	0.00	1100	0.400	10680	4440	10 -		7	
1.01.Tad	Ю-ІІ-Б	III	non-	OBPO	0,80	770-	8499	10653	+1110	42,7	9,3 (11)	199,	250
			saline	9090(0		1230			(+10,4)			0	
				80x80x60 K	0,85	790-	8190	9543		33,4		245,	285,7
				К	0,85	1280	8190	9545		55,4		243,	205,7
1.04.Tad	Ю-II-А	II	non-	OBPO	0,74	569	6260	8460	1790	32,7	1,6 (4,8)	191,	258,7
			saline		,				(22,2)	,		4	-
				65x70x60									
				К	0,73	447	8050	11027		31,1		258,	354,6
												8	
1.06.Tad	Ю-І-Г	III	non-	OBPO	0,85	880-	4423	5203	930	58,5	9,9	75,6	88,9
			saline			875			(17,8)		(16,9)		
				65x70x65									ı İ

Pilot's index	Soil- climatic zone	Water- allo- wance district	Salinity degree	Type of informa- tion	Field effici- ency	Irriga- tion depth, m ³ /ha		on norm, ³/ha	Achieve d pro- ducti- vity of irrigati- on water	Yield, c/ha	Yield incre- ment, c/ha (%)	pens prod	er ex- es per uction nit
							net	gross	expen- ses m ³ /ha, (%)			net, m ³ / c	gross , m ³ /c
				К	0,75	942- 1159	4600	6132		48,4		95,0	126,7
Experi- mental base of KKNIIZ	Ц-А-1	IV	weakly saline	Experi- ment 70x80x60	-	900- 1100	2361	-	-	36,4	-	650	-
Experi- mental base of KKNIIZ	Ц-А-1	IV	weakly saline	Experi- ment 70x80x60	-	900- 1000	2657	-	-	32,0	-	83,0	-
Experi- mental base of KKNIIZ	Ц-А-1	IV	medium saline	Experi- ment 70x80x60	-	900- 1200	1924	-	-	29,4	-	65,4	-

- the lowest irrigation norms of 4200-4250 m³/ha, 4 waterings with depth of 700-1100 m³/ha (irrigation interval 18-23 days), are fixed under hydromorphous conditions;
- irrigation norm for automorphous conditions is 7691 m³/ha: 11 waterings with depth of 770-1230 m³/ha;
- high cotton productivity 44,3-44,8 c/ha with the following specific water expenditures per yield unit: 96 m³/c (net) and 117 m³/c (gross) in "Khalkabad"; 191,4 m³/c (net) and 258 m³/c (gross) (table 1.2.2.1a);
- the least water losses for release and infiltration were about 21% in collective farm "Kommunizm" against 24-25% in control plots.

As a whole, 15-20% of irrigation water is saved under optimal irrigation regimes as compared with control options. At the same time, according to research results it was determined that the larger pre-irrigation moisture the smaller irrigation interval and more waterings. For instance, under optimal pre-irrigation moisture irrigation interval varies within 14-18 days while it is 25-28 days with moisture 60-60-60. The same situation is with number of irrigations. Under optimal pre-irrigation moisture there are 10-12 waterings in automorphous soils and 4-5 waterings in hydromorphous ones during growing period. The main advantage of frequent irrigation with small depth of 700-1100 m³/ha for hydromorphous soils and with 770-1230 m³/ha for automorphous ones is that supplied irrigation water is used mostly for moisture formation in the rooting zone. Under optimal irrigation regime soil moisture in the rooting zone (0-1m) riches 93-97% against FFC after irrigation, while in other options it exceeds FFC on 3-5% and more. In other words, in automorphous and hydromorphous soils frequent irrigation with small depth, even under ordinary furrow irrigation without stream regulation, creates favorable condition for controlling water flows with even moistening of irrigated area. In this case furrow irrigation technology meets moisture formation conditions in the rooting zone under surge and high frequency irrigation.

It should be noted that in both plots in options with pre-irrigation moisture different from an optimal one (the former is both higher and lower) lower cotton yields were gathered. The difference is 3-7 c/ha. Under very high pre-irrigation moisture cotton grows rapidly with more vegetation mass that affects yield increase due to such called obesity.

While organizing pilot studies on norm and depth of irrigation optimization the one of the important issues is selection of soil moistening depth with regard for growth and development of biomass and root system. In this respect results achieved in the pilot plot located in SPA "Zemledelie", Hissar district, Republic of Tadjikistan, is of big concern.

In this plot cotton irrigation regime was studied under pre-irrigation moisture 65-70-65% against FFC with $\pm 2\%$ deviation. Depth of moistening to establish date of irrigation was the following: 70-100-70 cm - control; 70-90-70 cm and 50-50-50 cm. Depth of moistening to establish depth of irrigation was 70-100-130 cm. Study on establishing dates of irrigation lasted 7 years. There were 5-7 waterings in control, 7 waterings under scheme of watering 70-70 cm and 5-7 waterings in other options. Irrigation norm in control option (70-100-70/100) ranged from 4708 m³/ha (1963) to 6952 m³/ha (1966), while depth of irrigation ranged from 942 m³/ha to 1160 m³/ha. In other options depth of irrigation was 700-900 m³/ha, while irrigation norms were 5700-6700 m³/ha (maximum) and 3500-4000 m³/ha (minimum) (table 1.2.2.2).

The table shows, that the deeper moistening depth the more depth and norm of irrigation. Thus, in option with moistening depth of 50cm and 70cm depth and norm of irrigation vary within 3500-5700 m³/ha, while under depth of 100cm and 130 cm they account for 942-1344 m³/ha and 4700-678 m³/ha, respectively. According to amount of supplied irrigation water and depending on moistening depth certain results on irrigation regime effectiveness were achieved and are shown in table 1.2.2.3.

Table 1.2.2.2

Options	Year	Norm of	Scheme of	Depth of	Surface re-	Deep re-
		irrigation,	watering	irrigation,	lease,	lease,
		m³/ha		m³/ha	%	%
Control						
<u>70-100-70</u>	1963(min)	4708	1-4-0	942		
100	1969(max)	6952	1-4-1	1159		
<u>70cm</u>	1963(min)	3516	1-4-0	703		
70	1965(max)	5706	1-4-1	951		
<u>50cm</u>	1963(min)	3552	1-4-0	710		
70	1965(max)	5716	1-4-1	953		
<u>70cm</u>	1966(min)	5161	1-5-0	860	5-19	2,3
70	1965(max)	5245	1-4-1	814	0-10	5,9
70-100-70	1965(min)	6529	1-3-1	1306	4-11	6,4
130	1966(max)	6718	1-4-0	1344	9-23	7,7

Norm and depth of irrigation, surface and deep releases

Table 1.2.2.3 shows, that the best results were achieved with moistening depth of 70-70-70cm/70cm and moisture was determined both by V.Kabayev and by weight method.

Another important issue is establishing an optimal nutrition regime for the highest crop productivity. This was studied in Lenin collective farm, Khodjekent district. The following preirrigation moistures were kept: 55-60-60% against FFC; 65-70-60% against FFC; and 75-80-60% against FFC. Nutrition regime was as follow: N150 P100-200, N250-350 P100-200. While analyzing data on norms and depth of irrigation and crop productivity formation it was found, that under conditions of the Northern Tadjikistan with thin stony gray-brown soils the optimal irrigation regime for middle-fiber cotton meets pre-irrigation moisture 65-70-60% of FFC and the following nutrition regime: N250-300; P100-200; K100-150 (table 1.2.2.4 and 1.2.2.5).

Table 1.2.2.3

Changes of yield, cotton water consumption depending on depth of calculated layer of soil moistening

Options	Time pe-	Yield,	Irriga-	Total	Release, %		Spe-
	riod	c/ha	tion	water			cific
	(1960-		norm	con-			water
	1966)			sump-			ex-
				tion,		-	penses,
				m ³ /ha	surface	deep	m ³ /c
Control	1963(min)	41,5	4708	-	34,5	6,9	113
	1966(max)	60,2	6952	8350	17,5	6,7	115

Options	Time pe-	Yield,	Irriga-	Total	Relea	se, %	Spe-
	riod	c/ha	tion	water			cific
	(1960-		norm	con-			water
	1966)			sump-			ex-
				tion,			penses,
				m ³ /ha	surface	deep	m ³ /c
70x100x70	average						
100(см)	1961-1966	48,7	5634	7349	26,8	7	121
Weight		,			· ·		
method of							
moisture							
definition							
<u>70(см)</u>	1963(min)	43,5	3516	-	25,5	1,7	81
70(см)	1966	57,3	4976	6790	10,5	3,6	83
Method of	average						
Karabayev	1960-1966	49,3	4655	6441	20,5	8,5	118
50(см)	1961	42,2	3552	-	31,5	1,9	84
70(см)	1966	59,5	4967	1203	13	3,2	83
Method of	average				13,2		
Karabayev	1961-1966	49,9	4641	6526		6,7	93
70	1965	58,4	5245	6199	0-10	5,9	90
70	1966	58,70	5161	6964	12	2,3	88
Weight	average	,					
method	1965-1966	58,55	5203	6584	11	4,1	89
70x100x70	1965	57,6	6529	7807	7,5	6,4	113
130	1966	58,4	6718	8240	16,0	7,7	115
Weight	average	,			,	,	
method	1965-1966	58,0	6624	8024	11,7	7,05	114

Table 1.2.2.4.

Water supply to the site, irrigation depth, number of waterings and irrigation norm

Irrigation	Fertilization	Number of	Irrigation	Average	Irrigation	Total wa-
regime	background	waterings	scheme	irrigation	norm,	ter con-
				depth,	m ³ /ha	sumption,
				m ³ /ha		m³/ha
55-60-60	$N_{\overline{O}} O^{p}O$	8	3-5-0	566	4525	5147
	№150 ^p 100-200	9	3-6-0	570	5125	5747
	№250-350 ^p 100-	10	3-6-1	550	5507	6129
	200					
65-70-60	N⁰O ^p O	10	4-6-0	537	5372	5930
	№150 ^p 100-200	11	4-7-0	543	5975	6533
	№150 ^p -350 ^p 100-	11	4-7-0	569	6263	6821
	200					
75-80-60	N⁰O ^p O	14	6-8-0	460	6425	6932
	№150 ^p 100-200	17	6-11-0	463	7867	8374
	№150 ^p -350 ^p 100-	18	6-12-0	447	8049	8556

200	
-----	--

Table 1.2.2.5.

Combination of irrigation regime and fertilizers application norm influence on row cotton yield on stony soils (after H.Domullojanov, V.Solodenko

##	Fertilization norm, kg/ha		65-70	-60 %	75-80	-60 %
	Ν	P_2O_5	average	yield in-	average	yield in-
			yield, c/ha	crement	yield, c/ha	crement
				due to fer-		due to fer-
				tilization		tilization
1.	0	0	10,8	-	11,3	-
2.	150	0	26,8	16,0	26,6	15,3
3.	150	100	23,5	12,7	26,6	15,3
4.	150	150	24,8	14,0	26,5	15,2
5.	150	200	26,5	15,7	24,8	13,5
6.	250	0	29,3	18,5	30,8	19,5
7.	250	100	29,1	18,3	35,0	23,7
8.	250	150	27,1	16,3	33,7	22,4
9.	250	200	30,5	19,7	32,7	21,4
10.	350	0	30,0	19,2	31,0	18,7
11.	350	100	28,3	17,5	29,5	18,2
12.	350	150	30,1	19,3	32,5	21,2
13.	350	200	33,3	22,5	31,1	19,8

1.2.3 Cotton water consumption

Crop water consumption comprises water used to form biomass (productive losses) and water lost for evaporation from soil surface and depends on many factors, such as productivity level, fertilizers portion, groundwater level, etc. Correlation of transpiration and total water consumption varies with crop development phases: evaporation from soil much exceeds transpiration during the phase "germination-flowering" and opposite situation occurs from flowering till fruit formation and ripening.

There were various cotton water consumption rates depending on irrigation and nutrition regimes as well as on genetic type of soils.

Considering information on changes in water consumption rates formed during growing period it should be said that the largest value is achieved in plots located within automophous soils. Actual water consumption in NISTO is 8080 m³/ha under furrow irrigation and 8070 m³/ha under sprinkler irrigation. Out of these water consumption values portion of water supply is 90% (7275 m³/ha) under surface irrigation and 49% (3990 m³/ha) under sprinkler irrigation. The rest is covered by water storage formed both by recharge irrigation and by precipitation. According to water consumption 26 c/ha of cotton was gathered under furrow irrigation and 31 c/ha under sprinkler irrigation. There were 4 waterings with depth of 1653-2250 m³/ha under surface irrigation and 7 waterings with depth of 430-630 m³/ha under sprinkler irrigation. For pure transpiration, i.e. for biomass formation, 60% of water was used under furrow irrigation and 64% under sprinkler irrigation. The rest of water was used to cover unproductive losses (table 1.2.2.6).

Maximum cotton yields with minimum water consumption are gathered while moistening 70 cm layer. Minimum cotton yields with maximum water consumption are gathered while moistening 100 cm and 50 cm layer.

In other plots of automorphous range, located in Hissar valley and Khodjekent district, maximum cotton yields (from 35,5 c/ha in thin stony soil to 58,5 c/ha in dark gray soil) are gathered under water consumption varied within 6584 (1.06.Tad)-10800 (1.01.Tad) m³/ha. In other options of irrigation regime, where cotton yield does not exceed 32-33,4 c/ha (excluding pilot plot 1.06.Tad with yield of 48,7 c/ha), water consumption is 7349-9791 m³/ha. It should be said, that under condition of automorphous range crop water consumption is covered mainly through water supply. Water supply portion in water consumption accounts for 92-98%, the rest portion is precipitation. Out of total water consumption 70-76% is used for transpiration and 24-30% is lost with evaporation from soil surface (table 1.2.2.6).

Under conditions of semi-automorphous and hydromorphous soils cotton water consumption decreases. Under conditions of semi-automorphous soil in state farm N24 of Karshi steppe water consumption during initial period of development accounted for 8050 m³/ha and 10350 m³/ha, of which only 73-77% were used efficiently. Low yields are accounted by repeated soil salinization.

.

Code	Location and soil type				onsumption on sin percentage		
		max	min	water	water	ground	transpi-
				stock	supply	water	ration
				max		max	share
				min	max	min	
					min		
1.01.Uz.	NISTO.		8080(26y/za)	10	90(7275)	-	60
	Tashkent prov-		_				
	ince, automor-			51	49(3990)	-	64
	phous, furrow,		8070(31µ/za)				
	sprinklers		_				
1.02. Uz.	state farm	8170(32µ/ га)	7830(24џ/ га	28	60	12	67
	G.Gulyam,	_	-				
	half-						
	automorphous						
	(2-3 m)						
1.06. Uz.	state farm	5370(44,3y/ xa)	5618(35,5y/ <i>a</i> a)	13	76,0	11,0	-
	Khalkabad, hy-	70x80x70	60x70x80	145	76,1	10,6	-
	dromorphous			,	,	,	
1.08. Uz.	state farm # 24	8050(28y/ za)	10350(11µ/ <i>2a</i>)	-	100	-	73-77
	(Karshi steppe),	-	-	-	100	-	
	half-						
	automorphous						
1.01.Tad.	collective farm	$\frac{10653(42,7u/za)}{70,70,60}$	$\frac{9791(33,4y/za)}{(33,4y/za)}$	$\frac{1,4}{4,8}$	98,6	-	73,5 70,2
	«Kommunizm»,	70x70x60	60x60x60	4,8	95,2	-	70,2
	automorphous						
1.04.Tad.	collective farm	<u>6821(35,24/2a</u>	8556(32,34/2a)	$\frac{8,2}{6,0}$	91,8	-	
	«Lenin», auto-	65x70x60	75x80x60	6,0	94	-	72
	morphous						
1.06.Tad.	SPA «Zemlede-	$\frac{6584(58,5y/za)}{(57,50)(57)}$	<u>7349(48,7µ/ га</u>	-	-	-	-
	lie», automor-	65x70x65 (X)	65x70x65 (X)	-	-	-	-
	phous	(A)	(1)				

Actual cotton water consumption and its distribution on the elements

Note: All tests were conducted under the same regime of pre-irrigation soil moisture with change of calculated layer.

The same situation is observed when having 8770 m³/ha and 7830 m³/ha of actual water consumption there is effect of groundwater. Groundwater portion in water consumption is 14-15%. The highest cotton yields (38-44 c/ha) were gathered under hydromorphous soils in collective farm "Khalkabad", Khorezm province. In the plot actual water consumption varied within 5350-5500 m³/ha (average is 5370 m³/ha) under maximum yield and was more than 5600 m³/ha with yields below 40 c/ha. In total water consumption water supply portion is 70-78%, while groundwater portion is 10,6-11%. The rest is covered through water storage formed during leachings ranging from 3500 m³/ha to 7000 m³/ha (average is 5000 m³/ha).

Leaching irrigation regime and leachings before vegetation provide negative field water-salt balance with 15-23 t/ha of removed salts and optimal soil water-salt regime.

At the same time, water storage and groundwater use portion in positive part of the balance are increasing. Due to this fact yield in the balance decreases and accounts for 70-75%. In negative part of the balance drainage modulus (effluent) is of the big importance and ranges from 15% to 30-35%.