УДК 550.34; 531/534; 627.8

СЕЙСМОМЕТРИЧЕСКИЕ НАБЛЮДЕНИЯ НА ТОКТОГУЛЬСКОЙ ГЭС

В.И. Довгань

SEISMOMETRIC SUPERVISIONS ON TOKTOGUL HYDROELECTRIC POWER STATION

V.I. Dovgan

1. Землетрясения. За период с апреля по декабрь 2015 г. система наблюдений на Токтогульской ГЭС записала 48 землетрясений. В пределах 150 км от плотины было зарегистрировано 27 толчков, из них восемь в районе гидроузла, остальные – удаленные (таблица 1). Восемь землетрясений могли ощущаться на гребне плотины с интенсивностью от 3.5 до 5 баллов.

В таблице 1 приведены: дата, местное время (час и минута) записи землетрясения на плотине, координаты, энергетический класс (логарифм энергии землетрясения в джоулях), расстояние от гидроузла до эпицентра (в километрах).

На рисунке 1 показаны карты эпицентров зарегистрированных землетрясений (за исключением непальских). Эпицентры двух самых сильных толчков, произошедших 26 октября и 26 декабря, удалены от плотины на 610 и 570 км соответственно. Из-за расположения очагов этих землетрясений на большой глубине сейсмические колебания распространялись на значительные расстояния без больших потерь энергии. На плотине землетрясения ощущались с интенсивностью до 4 баллов. Спектры колебаний – низкочастотные, типичные для удаленных землетрясений. Такие колебания воздействуют на плотину целиком и менее опасны для неё по сравнению с высокочастотными, действующими на отдельные блоки. При таких низкочастотных воздействиях значительные смещения могут происходить между бортами каньона. В частности, при землетрясении 26 октября они составили 0,77 мм.

Из всех близких и местных толчков по уровню воздействия на гидроузел можно выделить два. Одно землетрясение произошло 8 июня в 10 час 50 мин в 23 км к северо-востоку от плотины. Интенсивность колебаний в верхних точках на высоте 825 м составляла 4–5 баллов. Максимальные смещения наблюдались между блоками, где расположены первая и вторая, вторая и третья точки, и составили 121 и 115 микрон соответственно.

Второе достаточно сильное землетрясение произошло 17 ноября в 23 часа 29 мин в 150 км от плотины. Рассмотрим это землетрясение более детально, поскольку оно вызвало разрушения в эпицентральной зоне. По данным ИС НАН КР интенсивность сотрясений в населенных пунктах Лаглан, Кара-Сегет, Бек-Джар достигала 7 баллов. На плотине землетрясение записалось двумя

Рисунок 1 – Карты эпицентров записанных на плотине землетрясений, справа показана ближняя зона в пределах первых 50 км

Рисунок 2 – Записи продольных волн (слева) и поперечных волн (справа) во второй и десятой точках наблюдений

				<u>г</u> , ,,	F	D
1	Дата	Время	Широта	Долгота	Класс	Расстояние
1	9 апреля	14 час 14 мин	37.47	71.62	12.4	480
2	14 апреля	20 час 19 мин	41.3	/3.0	9.3	55
3	25 апреля	12 час 49 мин	28.27	84.78	17.5	1800 (Непал)
4	26 апреля	13 час 13 мин	28.27	84.78	≈ 16.0	1800 (Непал)
5	27 апреля	11 час 44 мин	41.75	72.71	5.6	10
6	27 апреля	11 час 49 мин	41.74	72.75	5.5	10
7	28 апреля	11 час 04 мин	37.56	71.33	12.1	440
8	1 мая	16 час 16 мин	41.65	72.56	6.2	13
9	2 мая	11 час 48 мин	39.74	74.05	12	250
10	9 мая	02 час 25 мин	39.48	75.13	9.6	330
11	12 мая	13 час 09 мин	27.83	86.14	17.5	1800 (Непал)
12	13 мая	03 час 21 мин	27.83	86.14	≈15	1800 (Непал)
13	17 мая	17 час 59 мин	41.62	71.42	10.1	100
14	18 мая	02 час 52 мин	41.58	72.69	5.1	9
15	30 мая	17 час 31 мин	27.83	86.14	≈15	1800 (Непал)
16	31 мая	02 час 37 мин	38.82	72.46	12.6	315
17	2 июня	02 час 31 мин	38.46	71.46	12.1	370
18	8 июня	09 час 30 мин	36.58	70.85	12	590
19	8 июня	10 час 50 мин	41.77	72.86	10.6	23.4
20	10 июня	01 час 56 мин	41.72	72.61	6.3	9.8
21	14 июня	21 час 35 мин	41.75	72.71	7.6	13
22	18 июня	02 час 13 мин	43.03	70.16	10.3	270
23	30 июня	04 час 08 мин	37.01	71.05	13.9	520
24	10 июля	06 час 32 мин	41.07	74.0	10.8	136
25	10 августа	16 час 06 мин	36.71	70.95	15	550
26	10 августа	18 час 31 мин	41.06	74.04	10.9	140
27	22 августа	07 час 50 мин	38.19	73.94	10.9	400
28	29 августа	05 час 02 мин	41.27	73.73	10.6	105
29	31 августа	22 час 15 мин	39.39	73.07	11.9	260
30	2 сентября	01 час 18 мин	37.34	69.98	13	550
31	10 сентября	03 час 5 мин	36.32	70.57	12.6	624
32	12 сентября	04 час 49 мин	41.56	72.69	8	11.4
33	20 сентября	22 час 09 мин	41.11	73.47	11.2	119
34	22 сентября	23 час 43 мин	41.29	71.9	11.2	82.3
35	2 октября	03 час 41 мин	41.12	74.05	9.5	135
36	20 октября	08 час 15 мин	41.7571	72.8555	8	30
37	21 октября	23 час 30 мин	41.7517	72.8058	6.5	18
38	26 октября	15 час 10 мин	36.51	70.88	15.2	610
39	14 ноября	11 час 10 мин	41.5184	72.7136	7.5	12
40	17 ноября	23 час 29 мин	40.38°	73.09	14.2	150
41	20 ноября	10 час 46 мин	40.68	73.28	11.2	120
42	21 ноября	06 час 15 мин	41.7259	71.2814	11.4	124
43	21 ноября	08 час 36 мин	41.72	71.58	10	100
44	24 ноября	20 час 46 мин	40.42°	73.25	11	150
45	1 декабря	12 час 13 мин	41.2028	73.1892	12	65
46	11 декабря	09 час 50 мин	41.5103	73.0096	9.7	35
47	13 декабря	05 час 02 мин	41.6621	73.2119	9.8	50
48	26 декабря	01 час 17 мин	36.71	70.93	15.4	570

Таблица 1 – Каталог основных параметров землетрясений, зарегистрированных за период с апреля по декабрь 2015 г.

Рисунок 3 – Распределение интенсивности по телу плотины при вступлении продольных волн

файлами – вступлением продольных и поперечных волн (рисунок 2).

Максимальные колебания при прохождении продольных волн через плотину наблюдались во второй центральной точке и на гребне и составили 2.5 и 2.8 балла соответственно. Магнитуда Мд с учетом спектрального состава изменялась в пределах от 3.48 – в девятой точке до 3.92 – на гребне (рисунок 3, таблица 2).

№ точки	Балл по скорости	Магнитуда, Мд
1	2.2	3.69
2	2.5	3.82
3	2.4	3.70
4	1.9	3.49
5	1.9	3.59
6	2.0	3.63
7	1.8	3.62
8	1.8	3.52
9	1.7	3.48
10	1.7	3.53
905 м	2.8	3.92

Таблица 2

Интенсивность воздействия на плотину поперечной S-волны выше продольной P-волны (рисунок 4, таблица 3).

Таблица З

№ точки	Балл по скорости	Магнитуда, Мд
1	3.6	4.04
2	4.0	4.13
3	3.3	4.02
4	3.1	3.84

Рисунок 4 – Распределение интенсивности колебаний на плотине при прохождении поперечных волн

5	3.2	3.91
6	3.2	3.93
7	3.1	3.91
8	3.1	3.82
9	2.8	3.78
10	3.5	3.86
905 м	4.4	4.24

При прохождении поперечных волн максимальные колебания наблюдались так же, как и при прохождении продольных, во второй точке и на гребне и составили 4.0 и 4.4 балла соответственно. Магнитуда Мд изменялась в пределах от 3.78 – в девятой точке до 4.24 – на гребне (таблица 3).

В таблице 4 приведены основные параметры смещения швов между точками наблюдений при прохождении через плотину поперечных волн.

Максимальные смещения по шву наблюдались по направлению вдоль течения между блоками, в которых расположены 1 и 2 точки и составили 0,16 мм. Раскрытие шва между блоками, в которых расположены первая и вторая точки наблюдений и проекции движения шва на три плоскости, показаны на рисунке 5.

Относительные смещения бортов каньона (точки 4 и 8) в вертикальном направлении составили 0,18 мм, относительное смещение между опорной точкой и основанием в направлении вдоль течения – 0,26 мм. В масштабах самой плотины это очень малые величины, которые не могли вызвать в сооружении заметных изменений.

На спектрах не наблюдается остаточных явлений: после землетрясения уровень шума возвратился к норме (рисунок 6).

Таблица 4				
Относительные движения по швам				
Смещение, мм:	Макс.	Мин.	Сумм.	
Точки 1, 2 по "Х":	0.0207393	-0.0356273	0.0563667	
Точки 1, 2 по "Y":	0.0922702	-0.0679007	0.160171	
Точки 1, 2 по "Z":	0.0296067	-0.0333643	0.0629711	
Точки 2, 3 по "Х":	0.0324463	-0.0188823	0.0513285	
Точки 2, 3 по "Y":	0.0450025	-0.0674319	0.112434	
Точки 2, 3 по "Z":	0.026598	-0.0303884	0.0569864	
Точки 5, 6 по "Х":	0.0208444	-0.0262344	0.0470788	
Точки 5, 6 по "Y":	0.0393502	-0.0254415	0.0647917	
Точки 5, 6 по "Z":	0.0355117	-0.0273849	0.0628966	
Точки 6, 7 по "Х":	0.0139226	-0.0165541	0.0304767	
Точки 6, 7 по "Ү":	0.0242967	-0.0277557	0.0520525	
Точки 6, 7 по "Z":	0.0242101	-0.0156585	0.0398687	

Рисунок 5 – Раскрытие шва между точками 1 и 2 и проекции движения точек на три плоскости

Рисунок 8 – Распределение интенсивности колебаний по телу плотины

Вестник КРСУ. 2016. Том 16. № 1

197

Рисунок 9 – Распределение спектральной магнитуды Мд по телу плотины

№ точки	балл (MSK-64)
1	0.9
2	1.5
3	0.5
4	0.2
5	0.3
6	0.4
7	0.4
8	0.1
9	0.8
10	0.1
905 м	2.5

Таблица 5

В целом, воздействие зарегистрированных в 2015 г. землетрясений было на порядок ниже расчетной прочности гидроузла.

Рисунок 11 – Спектрограмма записи аварии в трёхмерном изображении

Рисунок 10 - Спектрограмма записи аварии

№ точки	Мд
1	3.73
2	3.97
3	3.58
4	2.98
5	3.27
6	3.53
7	3.27
8	2.61
9	3.87
10	2.64
905 м	4.30

Таблица 6

2. События, не связанные с землетрясениями. С 24 апреля по 28 мая 2015 г. на плотине было зарегистрировано более 100 событий, не связанных с землетрясениями и пусками гидроагрегатов. Все они имели вид резких импульсов, одиночных или нескольких на одной записи. Длительность таких импульсов составила от десятых долей секунды до двух секунд. Высокочастотный состав колебаний при этих событиях вызывал значительную интенсивность колебаний в верхних точках плотины – до трёх баллов и более. При этом максимальные колебания для большей части событий наблюдались во второй точке по составляющей С-Ю – вдоль течения. Такие события, связанные с техногенными процессами на плотине, по уровню воздействия соизмеримы с местными землетрясениями.

Авария на Токтогульской ГЭС. Авария произошла 23 декабря в 08 час 01 мин по местному времени. Запись аварии приведена на рисунке 7.

Интенсивность воздействия аварии на тело плотины была незначительной: максимальная интенсивность колебаний наблюдалась во второй точке и на гребне плотины и составила 1.5 и 2.2 балла соответственно (рисунок 8, таблица 5). Магнитуда Мд с учетом спектрального состава изменялась в пределах от 2.61 – в восьмой точке до 4.30 – на гребне (рисунок 9, таблица 6).

Основная энергия выделилась на частоте 100 Гц и в низкочастотной области 0–50 Гц (рисунки 10, 11). Авария не повлияла на устойчивость плотины.